13,691 research outputs found

    Sedimentological and stratigraphic evolution of the southern part of the Barberton greenstone belt: A case of changing provenance and stability

    Get PDF
    The sedimentological and stratigraphic evolution of the 3.5 to 3.3 Ga Barberton Greenstone Belt can be divided into three principal stages: (1) the volcanic platform stage during which at least 8 km of mafic and ultramafic volcanic rocks, minor felsic volcanic units, and thin sedimentary layers (Onverwacht Group) accumulated under generally anorogenic conditions; (2) a transitional stage of developing instability during which widespread dacitic volcanism and associated pyroclastic and volcaniclastic sedimentation was punctuated by the deposition of terrigenous debris derived by uplift and shallow erosion of the belt itself (Fig Tree Group); (3) an orogenic stage involving cessation of active volcanism, extensive thrust faulting, and widespread deposition of clastic sediments representing deep erosion of the greenstone belt sequence as well as sources outside of the belt (Moodies Group)

    Chondrule-like particles provide evidence of early Archean meteorite impacts, South Africa and western Australia

    Get PDF
    The evolution of the Earth and the Earth crust was studied. Two layers, that contain abundant unusual spherical particles which closely resemble chondroules were identified. Chondrules occur on small quantities in lunar soil, however, they are rare in terrestrial settings. Some chondrules in meteorites were formed on the surfaces of planet sized bodies during impact events. Similar chondrule like objects are extremely rare in the younger geologic record and these abundances are unknown in ancient deposits, except in meteorites. It is suggested that a part of the Earth's terminal bombardment history, and conditions favoring chondrule formation existed on the early Earth

    The rock components and structures of Archean greenstone belts: An overview

    Get PDF
    Knowledge of the character and evolution of the Earth's early crust is derived from the studies of the rocks and structures in Archean greenstone belts. Ability to resolve the petrologic, sedimentological and structural histories of greenstone belts, however, hinges first on an ability to apply the concepts and procedures of classical stratigraphy. Unfortunately, early Precambrian greenstone terrains present particular problems to stratigraphic analysis. Many current controversies of greenstone belt petrogenesis, sedimentology, tectonics and evolution arise more from an inability to develop a clear stratigraphic picture of the belts than from ambiguities in interpretation. Four particular stratigraphic problems that afflict studies of Archean greenstone belts are considered: determination of facing directions, correlation of lithologic units, identification of primary lithologies and discrimination of stratigraphic versus structural contacts

    Studying the scale and q^2 dependence of K^+-->pi^+e^+e^- decay

    Full text link
    We extract the K^+-->pi^+e^+e^- amplitude scale at q^2=0 from the recent Brookhaven E865 high-statistics data. We find that the q^2=0 scale is fitted in excellent agreement with the theoretical long-distance amplitude. Lastly, we find that the observed q^2 shape is explained by the combined effect of the pion and kaon form-factor vector-meson-dominance rho, omega and phi poles, and a charged pion loop coupled to a virtual photon-->e^+e^- transition.Comment: 8 pages, 3 figure

    Proof Theory, Transformations, and Logic Programming for Debugging Security Protocols

    Get PDF
    We define a sequent calculus to formally specify, simulate, debug and verify security protocols. In our sequents we distinguish between the current knowledge of principals and the current global state of the session. Hereby, we can describe the operational semantics of principals and of an intruder in a simple and modular way. Furthermore, using proof theoretic tools like the analysis of permutability of rules, we are able to find efficient proof strategies that we prove complete for special classes of security protocols including Needham-Schroeder. Based on the results of this preliminary analysis, we have implemented a Prolog meta-interpreter which allows for rapid prototyping and for checking safety properties of security protocols, and we have applied it for finding error traces and proving correctness of practical examples

    Maximized Posteriori Attributes Selection from Facial Salient Landmarks for Face Recognition

    Full text link
    This paper presents a robust and dynamic face recognition technique based on the extraction and matching of devised probabilistic graphs drawn on SIFT features related to independent face areas. The face matching strategy is based on matching individual salient facial graph characterized by SIFT features as connected to facial landmarks such as the eyes and the mouth. In order to reduce the face matching errors, the Dempster-Shafer decision theory is applied to fuse the individual matching scores obtained from each pair of salient facial features. The proposed algorithm is evaluated with the ORL and the IITK face databases. The experimental results demonstrate the effectiveness and potential of the proposed face recognition technique also in case of partially occluded faces.Comment: 8 pages, 2 figure

    Probabilistic Search for Object Segmentation and Recognition

    Full text link
    The problem of searching for a model-based scene interpretation is analyzed within a probabilistic framework. Object models are formulated as generative models for range data of the scene. A new statistical criterion, the truncated object probability, is introduced to infer an optimal sequence of object hypotheses to be evaluated for their match to the data. The truncated probability is partly determined by prior knowledge of the objects and partly learned from data. Some experiments on sequence quality and object segmentation and recognition from stereo data are presented. The article recovers classic concepts from object recognition (grouping, geometric hashing, alignment) from the probabilistic perspective and adds insight into the optimal ordering of object hypotheses for evaluation. Moreover, it introduces point-relation densities, a key component of the truncated probability, as statistical models of local surface shape.Comment: 18 pages, 5 figure

    Partial Derivative Fitted Taylor Expansion: An efficient method for calculating gas/liquid equilibria in atmospheric aerosol particles - Part 2: Organic compounds

    Get PDF
    A flexible mixing rule is presented which allows the calculation of activity coefficients of organic compounds in a multi-component aqueous solution. Based on the same fitting methodology as a previously published inorganic model (Partial Differential Fitted Taylor series Expansion; PD-FiTE), organic PD-FiTE treats interactions between binary pairs of solutes with polynomials of varying order. The numerical framework of organic PD-FiTE is not based on empirical observations of activity coefficient variation, rather a simple application of a Taylor Series expansion. Using 13 example compounds extracted from a recent sensitivity study, the framework is benchmarked against the UNIFAC model. For 1000 randomly derived concentration ranges and 10 relative humidities between 10 and 99%, the average deviation in predicted activity coefficients was calculated to be 3.8%. Whilst compound specific deviations are present, the median and inter-quartile values across all relative humidity range always fell within ±20% of the UNIFAC value. Comparisons were made with the UNIFAC model by assuming interactions between solutes can be set to zero within PD-FiTE. In this case, deviations in activity coefficients as low as −40% and as high as +70% were found. Both the fully coupled and uncoupled organic PD-FiTE are up to a factor of ≈12 and ≈66 times more efficient than calling the UNIFAC model using the same water content, and ≈310 and ≈1800 times more efficient than an iterative model using UNIFAC. The use of PD-FiTE within a dynamical framework is presented, demonstrating the potential inaccuracy of prescribing fixed negative or positive deviations from ideality when modelling the evolving chemical composition of aerosol particles

    Modelling multi-phase halogen chemistry in the remote marine boundary layer: Investigation of the influence of aerosol size resolution on predicted gas-and condensed-phase chemistry

    Get PDF
    A coupled box model of photochemistry and aerosol microphysics which explicitly accounts for size-dependent chemical properties of the condensed-phase has been developed to simulate the multi-phase chemistry of chlorine, bromine and iodine in the marine boundary layer (MBL). The model contains separate seasalt and non-seasalt modes, each of which may be composed of 1–16 size-bins. By comparison of gaseous and aerosol compositions predicted using different size-resolutions with both fixed and size-dependent aerosol turnover rates, it was found that, for halogen-activation processes, the physical property initialisation of the aerosol-mode has a significant influence on gas-phase chemistry. Failure to adequately represent the appropriate physical properties can lead to substantial errors in gas-phase chemistry. The size-resolution of condensed-phase composition has a less significant influence on gas-phase chemistry
    • …
    corecore